
Plots for Tuning Instances
Source:R/TuningInstanceBatchSingleCrit.R
      autoplot.TuningInstanceBatchSingleCrit.RdVisualizations for mlr3tuning::TuningInstanceBatchSingleCrit.
The argument type controls what kind of plot is drawn.
Possible choices are:
"marginal"(default): Scatter plots of x versus y. The color of the points shows the batch number."performance": Scatter plots of batch number versus y"parameter": Scatter plots of batch number versus input. The color of the points shows the y values."parallel": Parallel coordinates plot. hyperparameters are rescaled by(x - mean(x)) / sd(x)."points": Scatter plot of two x dimensions versus. The color of the points shows the y values."surface": Surface plot of two x dimensions versus y values. The y values are interpolated with the supplied mlr3::Learner."pairs": Plots all x and y values against each other."incumbent": Plots the incumbent versus the number of configurations.
Arguments
- object
 - type
 (character(1)):
Type of the plot. See description.- cols_x
 (
character())
Column names of hyperparameters. By default, all untransformed hyperparameters are plotted. Transformed hyperparameters are prefixed withx_domain_.- trafo
 (
logical(1))
IfFALSE(default), the untransformed hyperparameters are plotted. IfTRUE, the transformed hyperparameters are plotted.- learner
 (mlr3::Learner)
Regression learner used to interpolate the data of the surface plot.- grid_resolution
 (
numeric())
Resolution of the surface plot.- theme
 (
ggplot2::theme())
Theggplot2::theme_minimal()is applied by default to all plots.- ...
 (ignored).
Examples
if (requireNamespace("mlr3tuning") && requireNamespace("patchwork")) {
  library(mlr3tuning)
  learner = lrn("classif.rpart")
  learner$param_set$values$cp = to_tune(0.001, 0.1)
  learner$param_set$values$minsplit = to_tune(1, 10)
  instance = ti(
    task = tsk("iris"),
    learner = learner,
    resampling = rsmp("holdout"),
    measure = msr("classif.ce"),
    terminator = trm("evals", n_evals = 10))
  tuner = tnr("random_search")
  tuner$optimize(instance)
  # plot performance versus batch number
  autoplot(instance, type = "performance")
  # plot cp values versus performance
  autoplot(instance, type = "marginal", cols_x = "cp")
  # plot transformed parameter values versus batch number
  autoplot(instance, type = "parameter", trafo = TRUE)
  # plot parallel coordinates plot
  autoplot(instance, type = "parallel")
  # plot pairs
  autoplot(instance, type = "pairs")
}
#> Warning: the standard deviation is zero
#> Warning: the standard deviation is zero
#> Warning: the standard deviation is zero