Visualizations for mlr3::PredictionClassif.
The argument type controls what kind of plot is drawn.
Possible choices are:
- "stacked"(default): Stacked barplot of true and estimated class labels.
- "roc": ROC curve (1 - specificity on x, sensitivity on y). Requires package precrec.
- "prc": Precision recall curve. Requires package precrec.
- "threshold": Systematically varies the threshold of the mlr3::PredictionClassif object and plots the resulting performance as returned by- measure.
Usage
# S3 method for class 'PredictionClassif'
autoplot(
  object,
  type = "stacked",
  measure = NULL,
  theme = theme_minimal(),
  ...
)Arguments
- object
- type
- (character(1)): 
 Type of the plot. See description.
- measure
- (mlr3::Measure) 
 Performance measure to use.
- theme
- ( - ggplot2::theme())
 The- ggplot2::theme_minimal()is applied by default to all plots.
- ...
- (ignored). 
References
Saito T, Rehmsmeier M (2017). “Precrec: fast and accurate precision-recall and ROC curve calculations in R.” Bioinformatics, 33(1), 145-147. doi:10.1093/bioinformatics/btw570 .
Examples
# \donttest{
if (requireNamespace("mlr3")) {
  library(mlr3)
  library(mlr3viz)
  task = tsk("spam")
  learner = lrn("classif.rpart", predict_type = "prob")
  object = learner$train(task)$predict(task)
  head(fortify(object))
  autoplot(object)
  autoplot(object, type = "roc")
  autoplot(object, type = "prc")
}
#> Warning: Arguments in `...` must be used.
#> ✖ Problematic argument:
#> • raw_curves = raw_curves
#> ℹ Did you misspell an argument name?
#> Warning: Arguments in `...` must be used.
#> ✖ Problematic argument:
#> • raw_curves = raw_curves
#> ℹ Did you misspell an argument name?
 # }
# }
