
Plots for Rpart Learners
Source:R/LearnerClassifRpart.R, R/LearnerRegrRpart.R
      autoplot.LearnerClassifRpart.RdVisualizations for mlr3::LearnerClassifRpart.
The argument type controls what kind of plot is drawn.
Possible choices are:
- "prediction"(default): Decision boundary of the learner and the true class labels.
- "ggparty": Visualizes the tree using the package ggparty.
Usage
# S3 method for class 'LearnerClassifRpart'
autoplot(
  object,
  type = "prediction",
  task = NULL,
  grid_points = 100L,
  expand_range = 0,
  theme = theme_minimal(),
  ...
)
# S3 method for class 'LearnerRegrRpart'
autoplot(
  object,
  type = "prediction",
  task = NULL,
  grid_points = 100L,
  expand_range = 0,
  theme = theme_minimal(),
  ...
)Arguments
- object
- type
- (character(1)): 
 Type of the plot. See description.
- task
- (mlr3::Task) 
 Train task.
- grid_points
- (integer(1)) 
 Number of grid points per feature dimension.
- expand_range
- (numeric(1)) 
 Expand the range of the grid.
- theme
- ( - ggplot2::theme())
 The- ggplot2::theme_minimal()is applied by default to all plots.
- ...
- (ignored). 
Examples
if (requireNamespace("mlr3")) {
  library(mlr3)
  library(mlr3viz)
  # classification
  task = tsk("iris")
  learner = lrn("classif.rpart", keep_model = TRUE)
  learner$train(task)
  autoplot(learner, type = "ggparty")
  # regression
  task = tsk("mtcars")
  learner = lrn("regr.rpart", keep_model = TRUE)
  learner$train(task)
  autoplot(learner, type = "ggparty")
}
#> Warning: Ignoring unknown parameters: `label.size`
#> Warning: Ignoring unknown parameters: `label.size`
