Visualizations for mlr3::BenchmarkResult.
The argument type controls what kind of plot is drawn.
Possible choices are:
- "boxplot"(default): Boxplots of performance measures, one box per mlr3::Learner and one facet per mlr3::Task.
- "roc": ROC curve (1 - specificity on x, sensitivity on y). The mlr3::BenchmarkResult may only have a single mlr3::Task and a single mlr3::Resampling. Note that you can subset any mlr3::BenchmarkResult with its- $filter()method (see examples). Requires package precrec.
- "prc": Precision recall curve. See- "roc".
- "ci": Plot confidence intervals. Pass a- msr("ci", ...)from the- mlr3inferrpackage as argument- measure.
Usage
# S3 method for class 'BenchmarkResult'
autoplot(
  object,
  type = "boxplot",
  measure = NULL,
  theme = theme_minimal(),
  ...
)Arguments
- object
- type
- (character(1)): 
 Type of the plot. See description.
- measure
- (mlr3::Measure) 
 Performance measure to use.
- theme
- ( - ggplot2::theme())
 The- ggplot2::theme_minimal()is applied by default to all plots.
- ...
- arguments passed on to - precrec::autoplot()for- type = "roc"or- "prc". Useful to e.g. remove confidence bands with- show_cb = FALSE.
References
Saito T, Rehmsmeier M (2017). “Precrec: fast and accurate precision-recall and ROC curve calculations in R.” Bioinformatics, 33(1), 145-147. doi:10.1093/bioinformatics/btw570 .
Examples
if (requireNamespace("mlr3")) {
  library(mlr3)
  library(mlr3viz)
  tasks = tsks(c("pima", "sonar"))
  learner = lrns(c("classif.featureless", "classif.rpart"),
    predict_type = "prob")
  resampling = rsmps("cv")
  object = benchmark(benchmark_grid(tasks, learner, resampling))
  head(fortify(object))
  autoplot(object)
  autoplot(object$clone(deep = TRUE)$filter(task_ids = "pima"), type = "roc")
}
 
